首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67845篇
  免费   18701篇
  国内免费   2657篇
  2023年   450篇
  2022年   599篇
  2021年   2132篇
  2020年   3379篇
  2019年   5157篇
  2018年   5250篇
  2017年   5140篇
  2016年   5679篇
  2015年   6510篇
  2014年   6538篇
  2013年   7260篇
  2012年   5522篇
  2011年   4864篇
  2010年   5114篇
  2009年   3544篇
  2008年   3001篇
  2007年   2365篇
  2006年   2139篇
  2005年   1893篇
  2004年   1628篇
  2003年   1529篇
  2002年   1273篇
  2001年   1139篇
  2000年   962篇
  1999年   769篇
  1998年   410篇
  1997年   382篇
  1996年   354篇
  1995年   293篇
  1994年   336篇
  1993年   228篇
  1992年   403篇
  1991年   344篇
  1990年   268篇
  1989年   266篇
  1988年   207篇
  1987年   229篇
  1986年   193篇
  1985年   169篇
  1984年   123篇
  1983年   111篇
  1982年   82篇
  1981年   63篇
  1980年   60篇
  1979年   78篇
  1977年   93篇
  1976年   59篇
  1975年   65篇
  1974年   78篇
  1971年   55篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
32.
33.
The classical Botts-Morales theory for the action of a modifier on the catalytic properties of an enzyme has been extended to deal with allosteric effects in serine proteases. The exact analytical solution derived for the linkage scheme at steady state provides a rigorous framework for the study of many biologically relevant systems, including enzymes activated by monovalent cations and cofactor-controlled protease-zymogen interactions in blood coagulation. When the enzyme obeys Michaelis-Menten kinetics, the exact solution of the kinetic linkage scheme simplifies considerably. Of particular importance for practical applications is a simple equation expressing the dependence of the specificity constant of the enzyme, kcat/Km, on the concentration of the modifier, from which the equilibrium binding constant for the formation of the enzyme-modifier complex can be estimated. Analysis of the allosteric changes in thrombin activity induced by thrombomodulin and Na+ in terms of this equation yields accurate determinations of the equilibrium binding constants for both effectors.  相似文献   
34.
35.
  • Highly biodiversity communities have been shown to better resist plant invasions through complementarity effects. Species richness (SR) is a widely used biodiversity metric but lacks explanatory power when there are only a few species. Communities with low SR can have a wide variety of phylogenetic diversities (PD), which might allow for a better prediction of invasibility.
  • We assessed the effect of diversity reduction of a wetland community assemblage typical of the Beijing area on biotic resistance to invasion of the exotic weed Alternanthera philoxeroides and compared the reduction in SR and PD in predicting community invasibility.
  • The eight studied resident species performed similarly when grown alone and when grown in eight‐species communities together with the invasive A. philoxeroides. Variation partitioning showed that PD contributed more to variation in both A. philoxeroides traits and community indicators than SR. All A. philoxeroides traits and community indicators, except for evenness index, showed a linear relationship with PD. However, only stem length of A. philoxeroides differed between the one‐ and two‐species treatments, and the diversity index of the communities differed between the one‐ and two‐species treatments and between the one‐ and four‐species treatments.
  • Our results showed that in natural or semi‐natural wetlands with relatively low SR, PD may be a better predictor of invasibility than SR. When designing management strategies for mitigating A. philoxeroides invasion, deliberately raising PD is expected to be more efficient than simply increasing species number.
  相似文献   
36.
Oceanic islands are productive habitats for generating new species and high endemism, which is primarily due to their geographical isolation, smaller population sizes and local adaptation. However, the short divergence times and subtle morphological or ecological divergence of insular organisms may obscure species identity, so the cryptic endemism on islands may be underestimated. The endangered weevil Pachyrhynchus sonani Kôno (Coleoptera: Curculionidae: Entiminae: Pachyrhynchini) is endemic to Green Island and Orchid Island of the Taiwan‐Luzon Archipelago and displays widespread variation in coloration and host range, thus raising questions regarding its species boundaries and degree of cryptic diversity. We tested the species boundaries of P. sonani using an integrated approach that combined morphological (body size and shape, genital shape, coloration and cuticular scale), genetic (four genes and restriction site‐associated DNA sequencing, RAD‐seq) and ecological (host range and distribution) diversity. The results indicated that all the morphological datasets for male P. sonani, except for the colour spectrum, reveal overlapping but statistically significant differences between islands. In contrast, the morphology of the female P. sonani showed minimum divergence between island populations. The populations of P. sonani on the two islands were significantly different in their host ranges, and the genetic clustering and phylogenies of P. sonani established two valid evolutionary species. Integrated species delimitation combining morphological, molecular and ecological characters supported two distinct species of P. sonani from Green Island and Orchid Island. The Green Island population was described as P. jitanasaius sp.n. Chen & Lin, and it is recommended that its threatened conservation status be recognized. Our findings suggest that the inter‐island speciation of endemic organisms inhabiting both islands may be more common than previously thought, and they highlight the possibility that the cryptic diversity of small oceanic islands may still be largely underestimated.  相似文献   
37.
Large‐scale biodiversity maps are essential to macroecology. However, between‐region comparisons can be more useful if patterns of observed species richness are supplemented by variations in dark diversity – the absent portion of the species pool. We aim to quantify and map plant diversity across Europe by using a measure that accounts for both observed and dark diversity. To do this we need to delimit suitable species pools, and evaluate the potential and limitation of a large‐scale dataset. We used Atlas Florae Europaeae (ca 20% of European plant species mapped within 50 × 50 km grid cells) and defined for each grid cell several species pools by applying various geographical and environmental filters: geographic species pool (number of species within 500 km radius), biogeographic species pool (additionally incorporating species distribution patterns, i.e. dispersion fields), site‐specific species pool (additionally integrating environmental preferences of species based on species co‐occurrence). We integrated dark diversity and observed diversity at a relative scale to calculate the completeness of site diversity: logistic expression of observed and dark diversity. We tested whether our results are robust against regional variation in data availability. We used independent regional databases to test if Atlas Florae Europaeae is a representative subset of total species richness. Environmental filtering was the most influential determinant of species pool size with more species filtered out in southern Europe. Both observed and dark diversity adhered to the well‐known latitudinal gradient, but completeness of site diversity varied throughout Europe with no latitudinal trend. Dark diversity patterns were fairly insensitive to variations in regional sampling intensity. Atlas Florae Europaeae represented well the total variation in plant diversity. In summary, dark diversity and completeness of site diversity add valuable information to broad‐scale diversity patterns since observed diversity is expressed at a relative scale.  相似文献   
38.
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号